python.control-flow ======================= dynamic_shape_if_guard ^^^^^^^^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`python.control-flow `, :doc:`torch.dynamic-shape ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch class DynamicShapeIfGuard(torch.nn.Module): """ `if` statement with backed dynamic shape predicate will be specialized into one particular branch and generate a guard. However, export will fail if the the dimension is marked as dynamic shape from higher level API. """ def forward(self, x): if x.shape[0] == 3: return x.cos() return x.sin() Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2, 2]): # cos: f32[3, 2, 2] = torch.ops.aten.cos.default(arg0_1); arg0_1 = None return (cos,) Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['cos'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None) Symbol to range: {} list_unpack ^^^^^^^^^^^ .. note:: Tags: :doc:`python.control-flow `, :doc:`python.data-structure ` Support Level: SUPPORTED Original source code: .. code-block:: python from typing import List import torch def list_unpack(args: List[torch.Tensor]): """ Lists are treated as static construct, therefore unpacking should be erased after tracing. """ x, *y = args return x + y[0] Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2], arg1_1: i64[], arg2_1: i64[]): # add: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None return (add,) Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1', 'arg2_1'], user_outputs=['add'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None) Symbol to range: {} static_for_loop ^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`python.control-flow ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch class StaticForLoop(torch.nn.Module): """ A for loop with constant number of iterations should be unrolled in the exported graph. """ def __init__(self): super().__init__() def forward(self, x): ret = [] for i in range(10): # constant ret.append(i + x) return ret Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2]): # add: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 0) add_1: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 1) add_2: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 2) add_3: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 3) add_4: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 4) add_5: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 5) add_6: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 6) add_7: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 7) add_8: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 8) add_9: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, 9); arg0_1 = None return (add, add_1, add_2, add_3, add_4, add_5, add_6, add_7, add_8, add_9) Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['add', 'add_1', 'add_2', 'add_3', 'add_4', 'add_5', 'add_6', 'add_7', 'add_8', 'add_9'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None) Symbol to range: {} static_if ^^^^^^^^^ .. note:: Tags: :doc:`python.control-flow ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch class StaticIf(torch.nn.Module): """ `if` statement with static predicate value should be traced through with the taken branch. """ def __init__(self): super().__init__() def forward(self, x): if len(x.shape) == 3: return x + torch.ones(1, 1, 1) return x Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, arg0_1: f32[3, 2, 2]): # full: f32[1, 1, 1] = torch.ops.aten.full.default([1, 1, 1], 1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False) add: f32[3, 2, 2] = torch.ops.aten.add.Tensor(arg0_1, full); arg0_1 = full = None return (add,) Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1'], user_outputs=['add'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None) Symbol to range: {}