Source code for torch.distributed.algorithms.ddp_comm_hooks.default_hooks
fromtypingimportAny,Callableimporttorchimporttorch.distributedasdist__all__=["allreduce_hook","fp16_compress_hook","bf16_compress_hook","fp16_compress_wrapper","bf16_compress_wrapper"]def_allreduce_fut(process_group:dist.ProcessGroup,tensor:torch.Tensor)->torch.futures.Future[torch.Tensor]:"Averages the input gradient tensor by allreduce and returns a future."group_to_use=process_groupifprocess_groupisnotNoneelsedist.group.WORLD# Apply the division first to avoid overflow, especially for FP16.tensor.div_(group_to_use.size())return(dist.all_reduce(tensor,group=group_to_use,async_op=True).get_future().then(lambdafut:fut.value()[0]))
[docs]defallreduce_hook(process_group:dist.ProcessGroup,bucket:dist.GradBucket)->torch.futures.Future[torch.Tensor]:""" This DDP communication hook just calls ``allreduce`` using ``GradBucket`` tensors. Once gradient tensors are aggregated across all workers, its ``then`` callback takes the mean and returns the result. If user registers this hook, DDP results is expected to be same as the case where no hook was registered. Hence, this won't change behavior of DDP and user can use this as a reference or modify this hook to log useful information or any other purposes while unaffecting DDP behavior. Example:: >>> # xdoctest: +SKIP >>> ddp_model.register_comm_hook(process_group, allreduce_hook) """return_allreduce_fut(process_group,bucket.buffer())
[docs]deffp16_compress_hook(process_group:dist.ProcessGroup,bucket:dist.GradBucket)->torch.futures.Future[torch.Tensor]:""" This DDP communication hook implements a simple gradient compression approach that casts ``GradBucket`` tensor to half-precision floating-point format (``torch.float16``) and then divides it by the process group size. It allreduces those ``float16`` gradient tensors. Once compressed gradient tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``). Example:: >>> # xdoctest: +SKIP >>> ddp_model.register_comm_hook(process_group, fp16_compress_hook) """group_to_use=process_groupifprocess_groupisnotNoneelsedist.group.WORLDworld_size=group_to_use.size()compressed_tensor=bucket.buffer().to(torch.float16).div_(world_size)fut=dist.all_reduce(compressed_tensor,group=group_to_use,async_op=True).get_future()defdecompress(fut):decompressed_tensor=bucket.buffer()# Decompress in place to reduce the peak memory.# See: https://github.com/pytorch/pytorch/issues/45968decompressed_tensor.copy_(fut.value()[0])returndecompressed_tensorreturnfut.then(decompress)
# TODO: create an internal helper function and extract the duplicate code in FP16_compress and BF16_compress.
[docs]defbf16_compress_hook(process_group:dist.ProcessGroup,bucket:dist.GradBucket)->torch.futures.Future[torch.Tensor]:""" Warning: This API is experimental, and it requires NCCL version later than 2.9.6. This DDP communication hook implements a simple gradient compression approach that casts ``GradBucket`` tensor to half-precision `Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_ (``torch.bfloat16``) and then divides it by the process group size. It allreduces those ``bfloat16`` gradient tensors. Once compressed gradient tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``). Example:: >>> # xdoctest: +SKIP >>> ddp_model.register_comm_hook(process_group, bf16_compress_hook) """group_to_use=process_groupifprocess_groupisnotNoneelsedist.group.WORLDworld_size=group_to_use.size()compressed_tensor=bucket.buffer().to(torch.bfloat16).div_(world_size)fut=dist.all_reduce(compressed_tensor,group=group_to_use,async_op=True).get_future()defdecompress(fut):decompressed_tensor=bucket.buffer()# Decompress in place to reduce the peak memory.# See: https://github.com/pytorch/pytorch/issues/45968decompressed_tensor.copy_(fut.value()[0])returndecompressed_tensorreturnfut.then(decompress)
[docs]deffp16_compress_wrapper(hook:Callable[[Any,dist.GradBucket],torch.futures.Future[torch.Tensor]])->Callable[[Any,dist.GradBucket],torch.futures.Future[torch.Tensor]]:""" This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision floating point format (``torch.float16``), and casts the resulting tensor of the given hook back to the input data type, such as ``float32``. Therefore, ``fp16_compress_hook`` is equivalent to ``fp16_compress_wrapper(allreduce_hook)``. Example:: >>> # xdoctest: +SKIP >>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10) >>> ddp_model.register_comm_hook(state, fp16_compress_wrapper(powerSGD_hook)) """deffp16_compress_wrapper_hook(hook_state,bucket:dist.GradBucket)->torch.futures.Future[torch.Tensor]:# Cast bucket tensor to FP16.bucket.set_buffer(bucket.buffer().to(torch.float16))fut=hook(hook_state,bucket)defdecompress(fut):decompressed_tensor=bucket.buffer()# Decompress in place to reduce the peak memory.# See: https://github.com/pytorch/pytorch/issues/45968decompressed_tensor.copy_(fut.value())returndecompressed_tensor# Decompress after hook has run.returnfut.then(decompress)returnfp16_compress_wrapper_hook
[docs]defbf16_compress_wrapper(hook:Callable[[Any,dist.GradBucket],torch.futures.Future[torch.Tensor]])->Callable[[Any,dist.GradBucket],torch.futures.Future[torch.Tensor]]:""" Warning: This API is experimental, and it requires NCCL version later than 2.9.6. This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision `Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format> `_ (``torch.bfloat16``), and casts the resulting tensor of the given hook back to the input data type, such as ``float32``. Therefore, ``bf16_compress_hook`` is equivalent to ``bf16_compress_wrapper(allreduce_hook)``. Example:: >>> # xdoctest: +SKIP >>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10) >>> ddp_model.register_comm_hook(state, bf16_compress_wrapper(powerSGD_hook)) """defbf16_compress_wrapper_hook(hook_state,bucket:dist.GradBucket)->torch.futures.Future[torch.Tensor]:# Cast bucket tensor to BF16.bucket.set_buffer(bucket.buffer().to(torch.bfloat16))fut=hook(hook_state,bucket)defdecompress(fut):decompressed_tensor=bucket.buffer()# Decompress in place to reduce the peak memory.# See: https://github.com/pytorch/pytorch/issues/45968decompressed_tensor.copy_(fut.value())returndecompressed_tensor# Decompress after hook has run.returnfut.then(decompress)returnbf16_compress_wrapper_hook
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.