torch.logspace¶
- torch.logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor ¶
Creates a one-dimensional tensor of size
steps
whose values are evenly spaced from to , inclusive, on a logarithmic scale with basebase
. That is, the values are:From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior.
- Parameters
start (float or Tensor) – the starting value for the set of points. If Tensor, it must be 0-dimensional
end (float or Tensor) – the ending value for the set of points. If Tensor, it must be 0-dimensional
steps (int) – size of the constructed tensor
base (float, optional) – base of the logarithm function. Default:
10.0
.
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (torch.dtype, optional) – the data type to perform the computation in. Default: if None, uses the global default dtype (see torch.get_default_dtype()) when both
start
andend
are real, and corresponding complex dtype when either is complex.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.logspace(start=-10, end=10, steps=5) tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) >>> torch.logspace(start=0.1, end=1.0, steps=5) tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) >>> torch.logspace(start=0.1, end=1.0, steps=1) tensor([1.2589]) >>> torch.logspace(start=2, end=2, steps=1, base=2) tensor([4.0])