python.assert¶
dynamic_shape_assert¶
Original source code:
import torch
def dynamic_shape_assert(x):
"""
A basic usage of python assertion.
"""
# assertion with error message
assert x.shape[0] > 2, f"{x.shape[0]} is greater than 2"
# assertion without error message
assert x.shape[0] > 1
return x
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 2]"):
return (arg0_1,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg0_1'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='arg0_1'), target=None)])
Range constraints: {}
Equality constraints: []
list_contains¶
Original source code:
import torch
def list_contains(x):
"""
List containment relation can be checked on a dynamic shape or constants.
"""
assert x.size(-1) in [6, 2]
assert x.size(0) not in [4, 5, 6]
assert "monkey" not in ["cow", "pig"]
return x + x
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 2]"):
add: "f32[3, 2]" = torch.ops.aten.add.Tensor(arg0_1, arg0_1); arg0_1 = None
return (add,)
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg0_1'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {}
Equality constraints: []